)

— S

AD=AO42 124 TEXAS UNIV AT AUSTIN ELECTRONICS RESEARCH CENTER F/6 9/2
DYNAMIC SCENE ANALYSIS: THE STUDY OF MOVING IMAGES: (U) .
JAN 77 W N MARTIN: J K AGGARWAL FOk620=76=C=0089
UNCLASSIFIED TR=184 AFOSR=TR=77=0722

ERTIECEE

PR—— i




. : %
AFOSR-TR- 77- 072 2 : @
o

ADAO42124

DYNAMIC SCENE ANALYSIS
THE STUDY OF MOVING IMAGES

by
W. N. Martin and J. K. Aggarwal

Departments of Computer Science

and Electrical Engineering

Technical Report NO. 184
January 15, 1977

INFORMATION SYSTEMS RESEARCH LABORATORY

[ This document has been approved
for public reloase and sale; iw
distribution is unlimited.

ELECTRONICS RESEARCH CENTER

THE UNIVERSITY OF TEXAS AT AUSTIN

Austin, Texas 78712

N —————— L e e e




T~

i o

The Electronics Research Center at The University of Texas at Austin
constitutes interdisciplinary laboratories in which graduate faculty members
and graduate candidates from numerous academic disciplines conduct research.

Research conducted for this technical report was supported in part by the
Department of Defense's JOINT SERVICES ELECTRONICS PROGRAM (U.S. Army,
U.S. Nevy, and the U.S. Air Force) through the Research Contract AFOSR
F44620-76-C-0089. This program {s monitored by the Department of Defense’s
JSEP Technical Advisory Committee consisting of representatives from the U.S.
Army Electronics Command, U.S. Army Research Office, Office of Naval
Research, and the U.S. Air Force Office of Scientific Research.

Additional support of specific projects by other Federal Agencies, Founda-
tions, and The University of Texas at Austin i{s acknowledged in footnotes to
the appropriate sections.

Reproduction, translation, publication, use, and disposal in whole or in
part by or for the United States Government is permitted.

Qualified requestors may obtain additional copies from the Defense
Documentation Center, all others should apply to the Clearinghouse for
Federal Scientific and Technical Information.




- ———

UNCLASSIFILD

SFECURITY CLASSIFICAT . ON OF TH!S PAGE (When Date Entered)

READ STR NS
REPO&T‘DOCUMEN TATION PAGE R AL C‘('::,}l }!%‘g"mw
y 1' REPORY uuueemw \\\\\ 2. GOVYT ACCESSION NO.| 3 ReaPsENY S CAYA .OGNUMBER
‘//\, _AFOSR{TR—7 ;-——()7)‘,* JLL) T e £
~ §& TITUE (and Subtitte) @ —— 5. TYPE OV WBROALAPGMODCOVERED
QDynamw Scene Analysls The Study INT;‘A(IM
“o_f_ AMOViﬂg Images’ T 6. PERFORMING ORG. REPORT NUMBER
TR #184 /
7. AUTKHQR(s) - - — o 8. CONTRACT OCR GRANT NUMBER(e)
| / I W N Ma!‘tin ﬁ ]- K./Aggarwal Cont./j“i‘462p_76_c_0089
- e=>, '
9 'QQFORMnNu ORGANIZAT!ON NAME ANC ADDRESS 10. PROGRAM ELEMENT, Pr’OJECT TASK
— 'Electronics Reseairch Center AREA'S {‘}"“" UNHTINUMBER
/  The University of Texas at Austin 3 : (9\\09 J/
~ Austin, Texas 78712 (/G 32;@8 A9
11 CCNTROLLING OFFICE NAME AND ADDRESS e AR REPORT ORPR e e
AF Office of Scientific Research (NE) ) |5 Jenuae¥I¥, 177
Building #410 \hm——TT3. NUMBER OF PAGES ,r-f:" ~
Bolling AFR, D. C. 20332 ) AN =¥
14, MONITORING AGENCY NAME & ADDRESS(If different {rom Controlling Oftice) 15. SECURITY CLASS. (ol‘ﬁhm‘}
- UNCLASSIFIED
| 15a. ¢ FICATION/ DOWNGRACING
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
Lo 19. KEY WOROS (Continue on reverse eide if necessary and identify by block number) ‘
I
MOVING IMAGES DYNAMIC IMAGES ‘
SCENE ANALYSIS IMAGE TRACKING I
¥
20. AIS?RACY (Ccntinue on reverse side Il necessary and Ideatily by dlock number) ‘
_”Scene analysis has long been a fusion point between the fields of f
pattern recognition and artificial intelligence: it integrates techniques {
from both disciplines. 'Crsually, these techniques are applied to single i
Y frames containing static images, but recently there has been growing !
interest in developing techniques which could be applied to scenes i
containing moving images. This report contalns two major parts: the first !
part s a survey of the computer systgms, as reported in the literature \(OVER

0D J33%s 1473 ST O XY 7 P A0 GNGLASSIFIED N 7|

LA™ / SECVURITY CLASSIFICATION OF TH!$ AGE {Fher Data Sntered) . .
T ———— - — T




UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Date Entered)

_»which attempt to analyze scenes containing moving images; the second
part is a detailed description of a system@eloped by the authorg’to
analyze scenes containing moving planar curvilinear objects., Included
are examples which indicate the success of the authors' syst&n,as well
as the need for further study. \

\

UNCILASSIFIED E
e a e ane , . R e




DYNAMIC SCENE ANALYSIS:

THE STUDY OF MOVING IMAGES*

by

W. N. Martin and J. K. Aggarwal

Departments of Computer Science
and Electrical Engineering

Technical Report No. 184
January 15, 1977

INFORMATION SYSTEMS RESEARCH LABORATORY

ELECTRONICS RESEARCH CENTER
THE UNIVERSITY OF TEXAS AT AUSTIN
Austin, Texas 78712

*This research was supported in part by the Air Force Office of
Scientific Research Grant 77-3190, and by the Joint Services

Electronics Program under Contract F44620-76-C-0089. [ACCESSION Tor
NTIS White Section "f'\’
Approved for public release; distribution unlimited. D0C Buff Section J ;
UNANNOUNCED G
JUSTIFICATION
BY
DISTRIBUTICH/AVAL ABI'ITY £O™FS
Dist.  AVAIL ana, S CIAL l

B RN T T I -

e v v———_—




ABSTRACT

Scene analysis has long been a fusion point between the fields of
pattern recognition and artificial intelligence: it integrates techniques from
both disciplines. Usually, these techniques are applied to single frames
containing static images, but recently there has been growing interest in
developing techniques which could be applied to scenes containing moving
images. This report contains twc major parts: the first part is a survey
of the computer systems, as reported in the literature, which attempt

to analyze scenes containing moving images; the second part is a detailed

description of a system developed by the authors to analyze scenes containing

moving planar curvilinear objects. Included are examples which indicate the

success of the authors' system,as well as the need for further study.

ii




TABLE OF CONTENTS

NOT FILMED

——

i L W

Page
ABSTRACT . o o e e e 500 o b o G e ii
ARG TS n o o ool o 0l O B b ok Ao O Gh hgha o e L vi
1IN TR @ D T N e e e e S i o e e s 1
2. A HISTORICAL SURVEY . ol e o o o o s s s o o 5l & s s o = o a s 4

2.1 Dynamic Scene Analysis inGeneral . . . . . . . .. . ... 4

2.2 MotionDetection . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o s ¢ o o o o o o o 7

2.3 Motion Analysis . o ¢ « & o« 5 5 o o 8 s s w e s w6 e s e 22
3. ANEWAPPROACH . . .. . . « ¢« ¢« « o s e et o e e e e e e 32

3.1 Acquisition oftheImages . . . . . . « ¢ ¢« ¢ o o 0 v o o 32

3.2 Encoding the Images . . . « ¢ ¢ v ¢« v o o o o o o v o 0o 35

3.3 Segment Matching . . . . ¢ « ¢ ¢ ¢« ¢ ¢ ¢ o o e e 45

3.4 Motionn AnalysSisS . . . « . ¢ « o ¢ ¢ o o o o o o o 0 e e e e 48

3.5 Examples . . . . . . .. e e T e e (o SRR R U 54
4, CONCLUSION ¢« o « o o « s & s 5 5 v 5 5 & &5 o o & s 4 55 o s 71
APPENDIX . . . . . . R e ha e R L e (el w6 74
REFERENCES « o v o ¢ ¢ s & o s ¢ 0 & & & & & » o & S ety 5 G 13 g 78

lv - .
| R LTI
At s e
[l i 3 st AN vt anin s Santrr 1 T B — o

e — e Ay

e




-~

W -

LIST OF FIGURES

Figure Page
] s Two Frames Showing the First Major Problem in Dynamic
Scene Analysis: Associating Semantically Identical Images
Although They Appear Different . . . . . . . . . . . .. . .. 6
2. Consecutive Frames Exemplifying the Second Major Problem
in Dynamic Scene Analysis: Occlusion . . . . . . . . . .. 8
S Cross-Correlation Example . . . . . . . Rty L, o 13
4. Image-Tracking Using a Predictive Model . . . . . . . . .. 21
e Example of Cloud Motion Analysis by Centroid Matching. . . 26
6. Example of the Analycsis of a Complex Image Formed by
QecItsion OF OBIETES. o o o el te st o s o~ ) Be rae orl erive o T oLl s 30
1o Binary Image Types . . . . . . . . S S g o S SRR 34
8a. Gray-Scale Overprint of Input Image . . . . . . . . . . . .. 36
8b. Binary Map from the Image of Fig. 8a . . . ¢« ¢ ¢ o ¢ « « « & 3
2 Chaln Code EXaMPLe i Ge v v s s % o & o @5 o & 6 o o % @ 38
10. Example cf Subtended Angle Chain Code . . . . . . . . . .. 40
11. Image Segmented into its Intrinsic Features, i.e., its
Coa@ LINB8 i & ol v 5 o o 0% 6 b e b e e 43
12. The Matched Edge Segments for a Pair of Consecutive
FISMIER 5 v 5 lion oph s St 8 B o arTB e 0 6 Biae W e w e 49
13. The Object Models Derived by Motion Analysis . . . . . . . 53
14, Example 1: Two Occluding Objects, ., « « ¢ ¢ « o ¢ ¢ o o & & 58
15. Example 2: Two Objects Separating . . . « « « . « « + & o % 60
16. Example 3: Three Objects With Various Motions . . . . . . . 66
"A “. - 'f"‘
vi ks PR'R(; 20 w2
¢ TECEDIG pyog s
\F')'w :' 0 s LAMLNO
Rl e T FIugp
T ——— &




1. INTRODUCTION

This report has two main purposes. The first is to present a detailed
description of previous attempts to develop computer systems which analyze
the temporal features of a visual scene. Chapter 2 begins with a general
discussion of this problem domain, but is primarily concerned with a survey
of the recent literature on what we will refer to as dynamic scene analysis.
The second purpose is to present the results of our attempt to develop a
dynamic scene analysis system, and Chapter 3 contains a rather detailed
discussion of th 1 as well as some of the examples which have
been analyzed f description of the human visual system will comprise
the remainder of this chapter and set the context for the further presentations.

The human eye, indeed any biological vision system, has an enor-
mous capability for efficiently and effectively transferring complex informa-
tion. The study of biological vision systems has shown that the eye is not
a mere transducer which accepts visual stimuli and transmits neural stimuli;
the transference process also involves the correlation and integration of
both spatial and temporal features of the visual stimulus. The psychological
literature is replete with studies of visual perception, but a few representa-
tive texts are those of Refs. 1-3. The endeavor to develop computer systems
with these capabilities is generally called scene analysis.

The papers presented in Refs. 4-6 give a good indication of the scope
and depth of the field of scene analysis: they show that the prime concern

has been to develop methods to detect, represent, store,and manipulate the
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spatial features of a scene. Thus scene analysis systems analyze a single
static image or picture in order to determine the constituents of the image
as well as obtain information about their structure. In most cases the
problem of analyzing the temporal features of the visual stimuli has been
put aside for further study; but it is clear that in biological systems the
dynamic nature of the stimulus is used extensively. In fact, Johannson [7]
states that "a frog or chameleon, for example, can perceive and catch its
prey only if the prey is moving." Various studies [8,9,10] on the eyes of
cats, frogs,and rabbits have found physiological structures specifically
for detecting moticn. MacKay [11] presents a theory that humans have
similar structures, and Schouten [12] concludes from his experiments on
humans that "these findings strongly support MacKay's hypothesis that
'detectors of motion as such' exist in the human visual system."

The retina of the human eye has an uneven distribution of receptors,
with the highest density around the fovea. Price [13] states that "visual
acuity is best at the fovea," and "since acuity is so poor at the periphery,
the eye must be moved around the scene so that areas of interest are
projected on the fovea." The attentive processes of the human visual sys-
tem operate on the stimuli which impinge upon the fovea, while the pro-
cesses on the periphery must recognize "areas of interest" for future
attention. Thus there must exist parallel processes, some of which perform
the detailed attentive functions at the fovea, while others "watch" the

peripheral areas of the visual field for interesting features. Clearly,these
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features could be shape, texture,and color; but more importantly, movement
is such a feature. Price [13] states "the periphery is sensitive to motion:
a movement in the periphery attracts attention." Just as the peripheral
processes must be able to detect motion and direct the attentive processes
to it, the attentive processes must be able to track the movement and attend
to the details of the objects in motion. These two phases of visual percep-
tion are exemplified by a person who is crossing a street. The person must
be able to notice "out of the comer of his eye" the movement of a car, as
well as be able to look at the car and judge its speed and direction of move-
ment. Chen and Jones [14] give a sketchy description of a similar multi-

leveled system,

It should be noted that the two phases mentioned above are,essential-

ly, not cognitive processes. A higher-level cognitive process is required to
decide questions such as which detected area of interest should be
attended to, and what detailed features should the attentive processes
consider? This multilevel structure implies that the various processes
deal with the stimuli at different levels of abstraction: the peripheral or
motion detection processes react in terms of movement itself in various
areas of the visual field; the attentive processes refer to the motion of
particular (if yet unnamed) objects; while the cognitive processes relate
both of these to the current "psychological set" of the person, his know-

ledge, and expectations.
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2. A HISTORICAL SURVEY

2.1 Dynamic Scene Analysis in General

This chapter will describe several computer systems which perform
the functions of the peripheral and attentive processes discuss¢d in the
previous chapter. Since the analysis required by these two types of pro-
cesses is quite different and since no system currently performs both
functions, the description will be split into two sections. But first, we will
discuss the general problems involved in computer analysis of the temporal
features of a visual scene, referred to here as dynamic scene analysis.

The general, problems discussed in this section are problems encountered
by both the peripheral and attentive phases of dynamic scene analysis.

In contrast to the single static image usually taken as input by
standard scene analysis systems, a dynamic image is the input for the
systems described here. A "dynamic image" is a series of static images
(referred to here as frames) with a given or assumed time function relating
the order and the elapsed interval between elements of the series. This,
of course, is taken from the paradigm of the dynamic images generated by
the static frames of a movie; however, the concept is fourded, as is any
discretizing function, on the principle that if the sampling interval is
smaller than the interval required to resolve the smallest feature of interest,
then no important information is lost by the function.

The analysis of dynamic images differs from standard scene analysis

in that not only must information be extracted from each frame, but informa-
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tion must also be extracted from the series as such: this means that

the details derived from each image must be integrated into a coherent
whole. This integration is not a simple compiling of facts, because change
is occurring in the appearance of the scene between frames; thus a given
feature or structure of a scene must be recognized even though it is con-
tinually changing. But the changes as well as the structures are important
in dynamic image analysis, so the techniques used to recognize the struc-
ture, regardless of a certain set of changes, must also be able to identify
the changes that occur. This process is further complicated by the existence
of noise in the scene: noise introduces changes which must be ignored.
Thus,a dynamic image analysis system must be able to separate the con-~
stancies from the changes, and be able to separate the interesting changes
from the noisy ones. In a slightly different form, Futrelle [15] presents

this aspect of the problem by saying that analysis of dynamic images

...is not, in fact, a case of concatenating the analysis of
a number of static frames. Explicit algorithms would have
to be devised to correlate sequential frames, to associate
apparently different but semantically identical items, to
handle objects which progressively occlude one another or
otherwise appear or disappear, etc., ad nauseum.

Figure 1 contains the gray-scale overprints of two frames which show how

"semantically identical" images may appear different in dynamic scenes.
Of particular interest in Futrelle's quote is that he included occlu-

sion as part of the ad nauseum. Indeed, occlusion remains a major problem

in both static and dynamic scene analysis. Although some amazing results
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for analyzing occluding objects have been obtained for polygonal shapes
in static [16] and dynamic [17] scenes, these methods do not seem to be
generalizable to scenes containing curvilinear shapes. Kasvand [18]

describes the problem of occlusion as a paradox. In his words,

. we immediately encounter a paradox, i.e., it is im-
possible to extract one object from the picture before the
object is recognized and it is impossible to recognize the
object before it is extracted, standardized for size, etc.
In other words, attempts to process one complete object
for recognition will not succeed.... Most often this diffi-
culty is avoided by defining that the objects are not to
touch or overlap. However, the paiadox is one of the
fundamental problems in picture analysis....

Figure 2 shows several frames from Ref. 19 which show an apparently single
object as analyzed into its appropriate occluding parts.

As the task of dynamic scene analysis has been described here, it
contains two major problems: (a) to associate "semantically identical"
images although they appear different; and (b) to solve the occlusion
"paradox". We shall now turn to a description of various attempts to
analyze dynamic scenes,and later return to these problems to present some
promising directions for the further research needed to solve them. Table 1
lists the papers surveyed in the next two sections in a chronological
ordering within the major subdivisions, with common techniques noted

where applicable.

2.2 Motion Detection

The majority of what little work has been done on dynamic scene
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Figure 2. Consecutive Frames Exemplifying the Second Major Problem in
Dynamic Scene Analysis: Occlusion,
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10

analysis concerns motion detection systems. The methods used in these
systems are best suited for the peripheral "attention attracting" processes
because they involve features which are in some sense global. In most
cases the analysis yields a motion vector for an entire frame or some arbi-
trary subset of it. They do not pick out entities within the scene, which
means that although they tend to solve the first of the two major problems
listed above, they cannot solve the second problem. The details of these
problems will be presented as each system is discussed.

The first dynamic scene analysis problem to gain much attention
was the automated detection and measurement of cloud motions from satel-
lite photographs,and we will discuss two such systems in this section and
one in the next section. Leese, et al [20] use two methods to implement
their automated system: in each case, they compare two successive pic-
tures with the first picture divided into systematic sections (64 x 64 pixels),;
then for each section, some reasonable area of the second picture is
searched for a good match to the original section. The first technique is
to form a "cross-correlation coefficient" using the fast-Fourier transform
on the full gray-scale values within the section. The cross-correlation
coefficient is computed for each pairing of the original section to a candi-
date section in the second picture; the candidate section which yields
the maximum coefficient is chosen as the match. The second technique is
to first form binary images of the original pictures by recording a one for

each spatial point whose gray-scale value is within a given interval,and a
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zero otherwise. This interval was chosen to yield the edges of the cloud
formations, i.e., a value greater than the dark background yet less than
the bright interior of the formations. The sections of the first binary image
are then mapped to an appropriate match in the second binary image by a
“relatively simple matching technique, " which is a modification of a method
developed by Moore and refined for cloud motion study by Bristor et al [21,22].
In both cases, the motion vector is computed as the distance and
direction between the center of the original section to the center of the
matched section, this essentially assigns a motion vector to the section,

not to any feature within the section. Herein lies the major drawback of

this system: the pictures are sectioned arbitrarily so that if there are two
or more features in a section, each having a different motion vector, the
section cannot be matched in the second image; alternatively, the section
is matched but the resulting vector is a weighted average of the actual
vectors. This particular problem is discussed in more detail in Ref. 23: the
authors state that "neither technique was successful in discriminating the
motion vectors when there were two or more layers of clouds present";

2 they conclude that "the inability of the automated techniques to discriminate
among multiple cloud layers present in the same image sector precludes
their implementation as a completely automated operation. "

Arking, Lo,and Rosenfeld [24] present a summary of a series of
papers [25-27] on the use of two Fourier-transform techniques to estimate

cloud motions from a pair of successive pictures: the first technique is
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to perform cross-correlation on the gray-scale values of the two pictures to
form a measure of the indicated motion; the second technique is a phase-
shift analysis in the frequency domain of the transformed images. The
phase-shift method has the advantage that,computationally, it is simpler
than cross-correlation; it has the additional feature that it yields "many
independent estimates" of the motion, whereas the cross-correlation method
yields one. This would appear to be an advantage; however, the various
estimates have proved difficult to analyze coherently in all but the most
straightforward examples.

Each technique was applied to both simulated and real images. Figure
3a shows consecutive simulated frames (taken from [24]) in which two clouds
are moving together. Both techniques gave good results even though most
of one cloud has moved out of the field of view. Two more frames in which
the clouds are moving in various directions are presented in Figure 3b; in
this case, the cross-correlation yields a weighted average of the velocities,
while the phase-shift method gave inconclusive results.

The authors cnnclude that other techniques are necessary to pre-
process the images in order to separate the clouds into groups that are
likely to be moving together, and then the Fourier-transform methods can be
used to analyze the motion of each group. They suggest that if the altitude
of the clouds could be determined, it would be an appropriate feature on which
to base the separation processor.

Potter [28,29] describes a system which uses motion as a method to
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segment a scene into objects. His original work [28] focused on the points
of a grid superimposed over each of two gray-scale images. For each point
of the grid, he calculates the distance to a discontinuity in the gray-scale
image or to the boundary of the image in each of four directions this
yields eight distance measurements (four for each picture) for each grid
point. From these distance measurements, eight motion measurements are
calculated, which in turn allow each point to be classified as being in
either the "body" of an object, the motion "shadow" of an object, or the
background. Clearly, the problem with this type of analysis is that it
classifies the points of the grid and not features, in either of the pictures.
The motion "shadow" classification is one good example of this because it
represents a feature which is in neither of the pictures. An area on the grid
is called a "shadow" if an object occupied that area in one of the pictures,
but did not occupy it in the other; actually, "shadows" are features of the
difference image between the pictures, not the pictures themselves.

Potter recognized the problem of focusing directly on grid points,
and in his latest work [29] he presents a variable "cross-shaped template"
which is generated from the first picture, then searched for in the second
picture. The term "cross-shaped" refers to the fact that the template
has an "arm" in each of the four directions. The template is variable because
the length of each arm is determined by the distance in the direction of the
arm from the center of the template to the nearest discontinuity in the gray-

scale image of the first picture. After such a template has been generated,
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a heuristic search for a match is begun at the same grid point of the second
picture. If a match is found,then a velocity value is computed by comparing
the position of the matched templates and this value is associated with the
grid point of the center of the template in the first picture; if no match is
found before a preset search limit is reached, then a null value (different
than zero) is associated with the pcint. Now, the scene of the first picture
can be segmented by grouping together points which are associated with the
same velocity values.

Potter states, "the avowed purpose of this procedure is to obtain a
crude first approximation of the basic object segments in a scene." Indeed,
this must be taken as a simple tool to be used to complement other segment-
ing processes. The clearest example of this is that if a series of scenes
have an object moving in them the process will correctly extract the object,
but if the object slows to stop it will be swallowed up by the background.
There are several fairly trivial problems such as just mentioned, but
there are two debilitating problems: the first is that the procedure cannot
analyze occluding objects; the second and most important is that the ob-
jects are not allowed to exhibit rotational velocity. The second problem
is of prime importance because rotational velocity is an integral part of any
motion, and yet it does not appear that the process can be readily extended
to analyze rotational velocity.

The papers [30,31] described in the following do not deal directly

with motion analysis; they do not attempt to recognize any particular

o NIRRT (e TSR T ey - —— — C——— —




16

feature in either of the two successive pictures, therefore they cannot
ascribe motion to a feature or even to the scene as a whole, They do, how-
ever, address the problem of determining areas of change between two images
of the same scene. The areas of difference are found by a simple subtrac-
tive process, but the simplicity of this operation requires that the images
must be carefully aligned by both spatial coordinates and intensity value.
The spatial registration is done by considering one image as the reference
image and then distorting the other image until they are aligned: the dis~
tortion is a localized procedure which operates on subregions (Ulstad calls
them submatrices) of the images. Cross-correlation techniques are used to
compute the amount of distortion necessary to align a subregion with its
corresponding subregion in the reference image. After the spatial registra-
tion has been completed, the gray-scale values must be matched! Lille-
strand calls this "transparency rectification", while Ulstad refers to it as
"moment matching” because the process matches the first two central mo-
ments of the gray-scale values of a given subregion with the moments in the
corresponding subregion in the reference image.

2o Once the images have been "rectified" a point-to-point subtraction
process generates a third image which displays the small-scale differences
between the given images. "Small-scale" is an important qualification be-
cause it seems that the areas of change must be of a size which is inconse-
quential to the rectification process, otherwise these processes would be-

come lost when trying to match the subregions.
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A hardware implementation of another subtractive method is discussed
by Limb and Murphy [32]: here the first of two consecutive frames from a
television camera is delayed so that the corresponding pixels of each frame
can be compared. In addition to those between-frame comparisons, within-
frame comparisons were made among pixels and their suitable neighbors.
The within-frame comparisons are used to normalize the between-frame
comparisons:. these comparisons are essentially the absolute differences
of the pixel intensity values and are summed over the entire frame. This
yields a velocity estimate for the frame as a whole and not for any feature
in particular, in fact, the system has not been tested on scenes with more
than one moving object,much less on scenes containing occluding objects.
Additionally, it appears that there are some rather subtle relationships be-
tween the texture of the background and the effectiveness of the system,.
In the face of these difficulties the system did give fairly accurate estimates
for the velocity of an object which was moving in the range of 0 to 3 pixels
per frame: the authors propose extensions to the normalizing process, which
should give better velocity estimates. Yet, the system remains fundamen-
tally a motion-detecting process because it "provides an estimate of the
average picture element displacement" between the frames.

A rather different form of image-differencing is used by Nagel [33]
to initially extract a single moving object from a dynamic scene; the
velocity measures calculated from the initial extraction are then used to

further refine the form of the extracted object. This system uses a complex
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dynamic image. From the original sequence of frames two subsequences
must be chosen so that the initial phase can analyze the differences be-
tween corresponding frames of the two subsequences, while the refinement
phase can analyze the similarities of the consecutive frames of the second
subsequence.

Each frame is segmented by a modified versicn of Yakimovsky's
region-growing algorithm [34,35]. The remaining analysis is performed on
these regions. Corresponding frames of the two subsequences are compared
to find overlapping regions whose gray-value distributions are similar;
these matched regions are then removed from the frames of the second
subsequence leaving the unmatched regions of each frame. If the two sub-
sequences have been chosen correctly, then the largest 4-connected group
of unmatched regions will be a good initial estimate of the moving object.
Velocity vectors are now computed for the "object-candidates" by performing
cross-correlations of the region boundaries in consecutive frames of the
second subsequence. Using the velocity estimates,the "object-candidates"
of all the frames can be spatially normalized, superimposed, and passed
through a thresholding procedure to yield a final representation of the
moving object.

This last process is similar to Potter's approach in that it requires
the object to exhibit only translational velocity, while the initial process
is similar to the differencing schemes previously mentioned in that it can-

not handle more than one moving object. The entire approach, however, has
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the more serious problem of specifying the proper subsequences, This

choice is critical to the performance of the system, yet the author can

only suggest how it might be done automatically, since in the examples
given it was chosen manually.

The next paper, Chow and Aggarwal [36], is dissimilar from the
other papers in this section because it relies on a preprocessor to extract
the objects from the frames; but, the system is more importantly similar to
the other systems in that it analyzes features global to the objects. Some
of the features used are the area, the position of the centroid, and the
angle (with respect to horizontal) of the second central moment of the figure.
The dynamic scenes analyzed by this system are taken from an image-dissector
camera viewing rigid curvilinear opague two-dimensional figures. A
preprocessor [37] is used to generate a binary image with the boundaries of
the figures marked as ones and the remainder of the image unmarked. The
figures are allowed to move at various velocities about the field-of-view of
the camera; however, when one figure occludes another the camera and
pl:eprocessm are unable to distinguish the intersection so that the boundaries
seem to merge and separate as the figures move.

As long as no occlusion occurs,the figures are tracked through their
various motions by simply matching the global features of the current frame
to those which are stored in the model. The features of the matched figures
in the model are then updated and new velocity estimates for each figure

are calculated. The occlusion of two or more figures requires the generation
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of a "predictive" model. Using the calculated velocities and figure descrip-
tions stored in the model, a frame is generated which "predicts" the appear-
ance of the figure resulting from the occlusion. If the actual figure in the
input frame matches the generated figure of the "predictive" model, then the
system assumes that its current velocity estimates are correct and simply
updates the model for each figure. In the example of Fig. 4, the "predic-
tive" model is not required until the third frame; at that point, the images
occlude one another and the system must form a joint image from the descrip-
tions retained in the model in order to correctly analyze the input frame. If
the "predictive" model does not match the actual figure,then the system
halts. This brings out the most serious restriction of the system, that
once two or more figures start occluding they must move with constant velo-
cities until they separate again. This restriction is due to both the simple
nature of the predictive model and the global aspect of the identifying
features,

There have been several rather novel applications of motion analysis,
and we will finish this section by discussing three of them. Fenton (38]
used a grating to project contour lines and reference points onto a moving
object, then analyzed the deformations of the contours to measure the move-
ment of the object (in this case the object was a living dog's heart). This
is essentially a range-finding method similar to those used in some static
scene analysis systems [39].

A binocular range-finder was used by Lappalainer and Tervouen [40]
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to track as many as four "reflective markers" as they moved through the
scene. Although the motion analysis system is minimal and the marker
identifying procedure is rather simple, this system is a first step at the
hardware level to correlate information from two cameras as well as from a
sequence of frames,

In contrast to the two systems above, Nevatia [41] proposes that
the series of frames in the dynamic scene taken from a moving camera be
used to simulate a stereo camera system in order to derive range informa-
tion. The idea is that the small differences between consecutive frames in
the series would allow common areas to be matched by cross-correlation or
normalized mean-square-difference techniques; the range information would
then be computed from the large differences between common areas (matched
through intermediate frames) of widely separated frames of the series. The
major problem with this system is that it gives no basis for determining the
relative camera positions in the two frames used by the range-finding process.
In the author's words, “for an actuél moving observer, the camera transforms
may be difficult to obtain and could be a major source of errors.” For a dis-
cussion of the problem in an orbital photography system see Smith and

Phillips [42].

2.3 Motion Analysis
In the following section we will discuss several systems whose

complexity and degree of detailed analysis are at the level of the "attentive”
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process, which we described in the introduction. Again, the first system
we shall discuss was developed to measure cloud movements,

The motion analysis described by Endlich et al [43] is carried out on
overlapping systematic sections (120 x 120 pixels using every fourth point)
taken from a satellite photograph after each section has passed through two
preprocessing phases. Here the sections in both pictures are taken to
represent the same geographical areas, while the overlap is used to connect
the sections within a photograph and detect motions across a section's
boundary. The first of the preprocesses extracts the clouds from the back-
ground: this is done by a simple thresholding on the gray-scale values.
The photographs are digitized into sixteen (0-15) levels of brightness,and
the threshold is set at six; thus every point having a brightness less than
six is declared to be background, while all the rest are considered to be
clouds. This process yields points in a three-dimensional space over the
x direction, the y direction,and the brightness level, the second preprocess
called ISODATA for Iterative Self-Organizing Data Analysis, works on these
points. ISODATA is a multivariate clustering technique [44) which detects
clusters and yields their center points: these points are called the "bright-
ness centers", and the motion analysis is performed on them.

The actual motion analysis is an iterative procedure to pair bright-
ness centers in a section of the first picture to centers in a section of the
second picture such that the pairings indicate the most consistent motion

= - = - , and A =B, -B
vectors., For this procedure Axlj xj xi, AyU yj y1 n BU j i
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are calculated for each ij, where i ranges over the indices of the centers
of the first photograph and j ranges over the indices of the centers of the
second photograph. From these values a "fitting function” F is formed

such that

L Ll il 2.2
F(iJ)—\(Axij X) +(AY” Y) +(ABU)) )

For the first iteration of the motion procedure, X is set to be the median of

the Axi values and Y is set to be the median of the Ay“ values. F is

j
evaluated for each pair ij,and brightness center i is matched to brightness
center j if F(ij) is close to zero. These pairings are then used to calculate
the average horizontal velocity Ax and the average vertical velocity Ay
for the given section. The remaining iterations are computed in a similar
manner, except X is set to be Ax and Y is set to be Ay, with Ax and Ay
computed by the immediately preceding iteration. The authors state that
“"three iterations gave stable results in pair-matching (and therefore also in
the motion vectors) in all cases investigated." Although not every center
is matched, this process yields a separate motion vector for each pair of
brightness centers.

The presence of two or more banks of clouds having various velocities
still presents a problem for this system. The authors state that "computed
motions are permitted to vary within different portions of the region treated,"

and while the statement is true,it deserves further discussion. It is, of

course, the degree to which the velocity vectors are permitted to vary that
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is at question. The problem occurs at two levels, the first of which is recog-

nized by the authors who state that "there are many cases where cloud mo-
tions change with altitude and this can cause ambiguity in computer process
ing when all clouds are lumped together, as they are by using brightness
alone to describe them." The problem here is that separate centers cannot
be generated for the interspersed points of the banks of clouds which occur
at various altitudes. The use of infrared data is set forth as a solution to
the problem at this level: "It appears that the addition of IR data to positicn
and brightness measurements would permit [SODATA to give separate centers
for clouds at different IR temperatures (i.e., altitudes)."

The second level at which this problem occurs is in the method used

to make the pairings between centers in the two sections. The authors again

seem to expect the solution to be found in the infrared data: " The motion
program can be generalized to include an IR measurement, and should gene-
rate separate cloud motions for different altitudes." However, as we stated
earlier,the motion program pairs brightness centers which yield the most
consistent motion vectors; possible pairings which have a motion vector
widely different from the other pairings are discarded. The authors even
point out an example (see Fig. 5) in which brightness would have

served to separate the clouds at different altitudes. Indeed, the brightness
difference helped pair the centers of the dominant cloud bank, yet the two
centers of the subordinate cloud bank are not paired. The reason for this is

that the motion vector, the dotted line labeled i in Fig. 5, which would
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have resulted from pairing the two centers would have been almost perpen-
dicular to all the other accepted motion vectors (i.e., the value of F at the
two centers would have been large for all iterations of the motion program).
While detecting the separate motions of occluding cloud banks re-
mains a problem for this system, the use of brightness centers is an appro-
priate method for describing cloud images, for two reasons: the large reduc-
tion in the amount of data required to represent the photographs; and the
ability of a center to easily represent the amorphous nature of a cloud image.
The system discussed by Aggarwal and Duda [17],and Peterman [45]
does not actually use machine-sensed data, rather the input is simulated by
using software-generated two-dimensional scenes. The scenes are allowed
to contain arbitrarily complex opaque rigid polygonal figures (possibly con-
taining holes) moving with various translational and rotational velocities.
The input is actually the spatial coordinates of the visible vertices of the
perturbed parallel projection of each frame. The projections are perturbed
in that a preset amount of additive noise is introduced at the coordinates of
the vertices. A vertex is visible unless it is occluded by another polygon,
in which case new vertices are generated at the points where the boundaries
of the polygons intersect. Thus, there are two types of vertices in this
problem domain: the first type includes the actual vertices of the polygons,
while the second type includes the vertices generated by the intersection of
occluding polygons. The authors refer to these as "real" and "false" vertices,

respectively. It is one of the main tasks of this system to correctly classify
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each of the input vertices into one of these two groups. This task is made
manageable by requiring that the polygons be rigid, in which case the
angular measure of the "false" vertices will change between frames, while
the angular measure of the "real" vertices will vary only with the additive
noise. The change at the "false" vertices is due to the difference in the
rotational velocities of the occluding polygons. This problem is not solved
by the requirement of rigid polygons, for two reasons: (a) in order to deter-
mine that angular change is occurring between frames at a vertex one must
be able to identify the vertex in both frames; (b) if the occluding polygons
do not exhibit any relative rotational velocity, then the angular measure of
the "false" vertices will not be changing.

The task is actually solved by making one further observation about
the problem domain and one further restriction on the input scenes? the
observation is that an acute-angled vertex cannot be generated by the inter-
section of two polygons (i.e., cannot be "false"). This means that any
acute-angled vertex must be a "real" vertex of some actual polygon. Thus,
if the polygons in the scene are reasonably heterogenous, then a polygon in
one frame can be identified in the next frame by searching for a suitable
number of matches to its "real" vertices; but, the entire polygon may not be
matched by this process because it is the union of two or more actual poly-
gons and contains "false" vertices. At this point, the authors use a final
restriction, which is that at most one "real" vertex may become occluded

or become visible between any two consecutive frames. The implications of
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this restriction are that all possible "false" vertices can be classified into
six groups based on the difference in the number of acute angles between the
first frame and the second frame, as well as the difference in the number of
obtuse angles. This classification scheme allows special procedures to be
written to identify the "false" vertices in each case. 4

Throughout the processing of a dynamic scene,this system forms
and continually updates a model for each actual polygon encountered. Thus,
if an apparent polygon in a particular frame is the union of several actual
polygons,then a model will be associated with the apparent polygon for each
of the constituent actual polygons. The association is through the visible
"real" vertices of the actual polygon. The authors point out that these
models not only allow the system to track occluding polygons, but also allow
the system to generate a complete description of actual polygons having seen
onl: a series of partial views of it. Figure 6 contains every other frame of
an example from Ref. 19, exhibiting the analysis of complex occluding images.
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